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1 Introduction

Many tasks in safety-critical embedded systems have hard real-time characteristics. Failure to meet dead-
lines may result in the loss of life or in large damages. Utmost carefulness and state-of-the-art machinery
have to be applied to make sure that all requirements are met. To do so lies in the responsibility of the
system designer(s). Fortunately, the state of the art in deriving run-time guarantees for real-time systems has
progressed so much that tools based on sound methods are commercially available and have proved their
usability in industrial practice.
Recent advances in the area of abstract interpretation have led to the development of static program analysis
tools that efficiently determine upper bounds for the Worst-Case Execution Time (WCET) of code snippets
given as routines in executables.
The predicted WCETs can be used to determine an appropriate scheduling scheme for the tasks and to
perform an overall schedulability analysis in order to guarantee that all timing constraints will be met (also
called timing validation) [9]. Some real-time operating systems offer tools for schedulability analysis, but
all these tools require the WCETs of tasks as input.

2 Measurement-Based WCET Analysis

Measuring the execution time seems to be a simple alternative to WCET determination by static analysis. Yet
the characteristics of modern software and hardware complicate WCET analysis based on measurements.

2.1 Software Features Making Measurement-Based WCET Analysis a Challenge

Embedded control software (e.g., in the automotive industries) tends to be large and complex. The software
in a single electronic control unit typically has to provide different kinds of functionality. It is usually
developed by several people, several groups or even several different providers. Code generator tools are
widely used. They usually hide implementation details to the developers and make an understanding of the
timing behavior of the code more difficult. The code is typically combined with third party software such as
real-time operating systems and/or communication libraries.
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3 Prediction of the Worst-Case Execution Time by Static Program Analysis

2.2 Hardware Features Making Measurement-Based WCET Analysis a Challenge

There is typically a large gap between the cycle times of modern microprocessors and the access times of
main memory. Caches and branch target buffers are used to overcome this gap in virtually all performance-
oriented processors (including high-performance micro-controllers and DSPs). Pipelines enable accelera-
tion by overlapping the executions of different instructions. Consequently the execution behavior of the
instructions cannot be analyzed separately since it depends on the execution history.
Cache memories usually work very well, but under some circumstances minimal changes in the program
code or program input may lead to dramatic changes in cache behavior. For (hard) real-time systems, this is
undesirable and possibly even hazardous. Making the safe yet – for the most part – unrealistic assumption
that all memory references lead to cache misses results in the execution time being overestimated by several
hundred percent.
The widely used classical methods of predicting execution times are not generally applicable. Software
monitoring or the dual-loop benchmark change the code, which in turn has impact on the cache behav-
ior. Hardware simulation, emulation, or direct measurement with logic analyzers can only determine the
execution time for one input. They cannot be used to infer the execution times for all possible inputs in
general.
Furthermore, the execution time depends on the processor state in which the execution is started. Modern
processor architectures often violate implicit assumptions on the worst start state. The reason is that they
exhibit timing anomalies as defined in [7], which consist of a locally advantageous situation, e.g., a cache
hit, resulting in a globally larger execution time. As also demonstrated in [7], processor pipelines may
exhibit so-called domino effects where – for some special pieces of code – the difference between two start
states of the pipeline does not disappear over time, but leads to a difference in execution time that cannot be
bounded by a constant.

3 Prediction of the Worst-Case Execution Time by Static Program Analysis

Abstract interpretation can be used to efficiently compute a safe approximation for all possible cache and
pipeline states that can occur at a program point. These results can be combined with ILP (Integer Linear
Programming) techniques to safely predict the worst-case execution time and a corresponding worst-case
execution path. This approach can help to overcome the challenges listed in the previous sections.
AbsInt’s WCET tool aiT determines the WCET of a program task in several phases [4] (see Figure 1):

• CFG Building decodes, i.e. identifies instructions, and reconstructs the control-flow graph (CFG)
from a binary program;

• Value Analysis computes value ranges for registers and address ranges for instructions accessing
memory;

• Loop Bound Analysis determines upper bounds for the number of iterations of simple loops;

• Cache Analysis classifies memory references as cache misses or hits [3];

• Pipeline Analysis predicts the behavior of the program on the processor pipeline [6];

• Path Analysis determines a worst-case execution path of the program [10].

Cache Analysis uses the results of value analysis to predict the behavior of the (data) cache. The results
of cache analysis are used within pipeline analysis allowing the prediction of pipeline stalls due to cache
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Figure 1: Phases of WCET computation

misses. The combined results of the cache and pipeline analyses are the basis for computing the execu-
tion times of program paths. Separating WCET determination into several phases makes it possible to use
different methods tailored to the subtasks [10]. Value analysis, cache analysis, and pipeline analysis are
done by abstract interpretation [2], a semantics-based method for static program analysis. Integer linear
programming is used for path analysis.

3.1 Reconstruction of the Control Flow from Binary Programs

The starting point of our analysis framework (see Figure 1) is a binary program and a so-called AIS file con-
taining additional user-provided information about numbers of loop iterations, upper bounds for recursion,
etc. (see section 4).
In the first step a parser reads the executable and reconstructs the control flow [?, ?]. This requires some
knowledge about the underlying hardware, e.g., which instructions represent branches or calls. The recon-
structed control flow is annotated with the information needed by subsequent analyses and then translated
into CRL (Control Flow Representation Language) – a human-readable intermediate format designed to sim-
plify analysis and optimization at the executable/assembly level. This annotated control-flow graph serves
as the input for micro-architecture analysis.
The decoder can find the target addresses of absolute and pc-relative calls and branches, but may have
difficulties with target addresses computed from register contents. Thus, aiT uses specialized decoders
that are adapted to certain code generators and/or compilers. They usually can recognize branches to a
previously stored return address, and know the typical compiler-generated patterns of branches via switch
tables. Yet non-trivial applications may still contain some computed calls and branches (in hand-written
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assembly code) that cannot be resolved by the decoder; these unresolved computed calls and branches are
documented by appropriate messages and require user annotations (see section 4). Such annotations may
list the possible targets of computed calls and branches, or tell the decoder about the address and format of
an array of function pointers or a switch table used in the computed call or branch.

3.2 Value Analysis

Value analysis tries to determine the values in the processor registers for every program point and execution
context. Often it cannot determine these values exactly, but only finds safe lower and upper bounds, i.e.
intervals that are guaranteed to contain the exact values. The results of value analysis are used to determine
possible accesses of indirect memory accesses – important for cache analysis – and in loop bound analysis
(see section 3.3).
Value analysis uses the framework of abstract interpretation [2]: an abstract state maps registers to intervals
of possible values. Each machine instruction is modeled by a transfer function mapping input states to
output states in a way that is compatible with the semantics of the instruction. At control-flow joins, the
incoming abstract states are combined into a single outgoing state using a combination function. Because
of the presence of loops, transfer and combination functions must be applied repeatedly until the system
of abstract states stabilizes. Termination of this fixed-point iteration is ensured on a theoretical level by
the monotonicity of transfer and combination functions and the fact that a register can only hold finitely
many different values. Practically, value analysis becomes only efficient by applying suitable widening and
narrowing operators as proposed in [2]. The results of value analysis are usually so good that only a few
indirect accesses cannot be determined exactly. Address ranges for these accesses may be provided by user
annotations.

3.3 Loop Bound Analysis

WCET analysis requires that upper bounds for the iteration numbers of all loops be known. aiT determines
the number of loop iterations by loop bound analysis. This is possible for many loops occurring in typical
applications. Bounds for the iteration numbers of the remaining loops must be provided as user annotations
(see section 4).
Loop bound analysis relies on a combination of value analysis (see section 3.2) and pattern matching, which
looks for typical loop patterns. In general, these loop patterns depend on the code generator and/or compiler
used to generate the code that is being analyzed. There are special aiT versions adapted to various generators
and compilers.

3.4 Cache Analysis

Cache analysis classifies the accesses to main memory. The analysis in our tool is based upon [3], which
handles analysis of caches with LRU (Least Recently Used) replacement strategy. However, it had to be
modified to reflect the non-LRU replacement strategies of common microprocessors: the pseudo-round-
robin replacement policy of the ColdFire MCF 5307, and the PLRU (Pseudo-LRU) strategy of the PowerPC
MPC 750 and 755. The modified algorithms distinguish between sure cache hits and unclassified accesses.
The deviation from perfect LRU is the reason for the reduced predictability of the cache contents in case of
ColdFire 5307 and PowerPC 750/755 compared to processors with perfect LRU caches [5].
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3.5 Pipeline Analysis

Pipeline analysis models the pipeline behavior to determine execution times for sequential flows (basic
blocks) of instructions, as done in [?]. It takes into account the current pipeline state(s), in particular resource
occupancies, contents of prefetch queues, grouping of instructions, and classification of memory references
by cache analysis. The result is an execution time for each basic block in each distinguished execution
context.
Like value and cache analysis, pipeline analysis is based on the framework of abstract interpretation. Pipeline
analysis of a basic block starts with a set of pipeline states determined by the predecessors of the block and
lets this set evolve from instruction to instruction by a kind of cycle-wise simulation of machine instructions.
In contrast to a real simulation, the abstract execution on the instruction level is in general non-deterministic
since information determining the evolution of the execution state is missing, e.g., due to non-predictable
cache contents. Therefore, the abstract execution of an instruction may cause a state to split into several
successor states. All the states computed in such tree-like structures form the set of entry states for the
successor instruction. At the end of the basic block, the final set of states is propagated to the successor
blocks. The described evolution of state sets is repeated for all basic blocks until it stabilizes, i.e. the state
sets do not change any more.
The output of pipeline analysis is the number of cycles a basic block takes to execute, for each context,
obtained by taking the upper bound of the number of simulation cycles for the sequence of instructions for
this basic block. These results are then fed into path analysis to obtain the WCET for the entire task.

3.6 Path Analysis

Path analysis uses the results of pipeline analysis, i.e. the estimated WCETs at the control-flow edges for all
contexts, to compute a WCET estimation for the entire code that is currently analyzed.
Let T (e,c) be the estimated WCET for edge e and context c as determined by cache and pipeline analysis.
Furthermore, let C(e,c) be the execution count, which indicates how often control passes along edge e in
context c. If one knows for a specific run of the code the execution counts C(e,c) for each edge e in each
context c, then one can get an upper bound for the time of this run by taking the sum of C(e,c) ·T (e,c) over
all edge-context pairs (e,c). Thus, the task of obtaining a global WCET estimation can be solved by finding
a feasible assignment of execution counts C(e,c) to edge-context pairs that maximizes ∑C(e,c) · T (e,c).
The value of this sum is then the desired global WCET estimate.
Therefore, path analysis is implemented by integer linear programming: The path analyzer sets up a system
of linear constraints over the integer variables C(e,c). Then an auxiliary tool looks for a solution of this
constraint system that maximizes ∑C(e,c) · T (e,c). The constraints of the constraint system are derived
from the control structure and from the loop bounds found by loop bound analysis or provided by the user.
Constraints derived from the control structure are for instance those that assert that the sum of the execution
counts of the incoming edges of a block equals the sum of the execution counts of the outgoing edges.
Additional constraints can be derived from user annotations representing knowledge about dependencies of
program parts.

3.7 Analysis of Loops and Recursive Procedures

Loops and recursive procedures are of special interest since programs spend most of their runtime there.
Treating them naively when analyzing programs for their cache and pipeline behavior results in a high loss
of precision.
Frequently the first execution of the loop body loads the cache, and subsequent executions find most of their
referenced memory blocks in the cache. Because of speculative prefetching, cache contents may still change
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considerably during the second iteration. Therefore, the first few iterations of the loop often encounter cache
contents quite different from those of later iterations. Hence it is useful to distinguish the first few iterations
of loops from the others. This is done in the VIVU approach (virtual inlining, virtual unrolling) [8].
Using upper bounds on the number of loop iterations, the analyses can virtually unroll not only the first few
iterations, but all iterations. The analyses can then distinguish more contexts and the precision of the results
is increased – at the expense of higher analysis times.

4 User Annotations

Apart from the executable, aiT needs user input to find a result at all, or to improve the precision of the
result. The most important user annotations specify the targets of computed calls and branches and the
maximum iteration counts of loops (there are many other possible annotations).

4.1 Targets of Computed Calls and Branches

For a correct reconstruction of the control flow from the binary, targets of computed calls and branches must
be known. aiT can find many of these targets automatically for code compiled from C. This is done by
identifying and interpreting switch tables and static arrays of function pointers. Yet dynamic use of func-
tion pointers cannot be tracked by aiT, and hand-written assembly code in library functions often contains
difficult computed branches. Targets for computed calls and branches that are not found by aiT must be
specified by the user. This can be done by writing specifications of the following forms in a parameter file
called AIS file:

INSTRUCTION ProgramPoint CALLS Target1, ..., Targetn ;

INSTRUCTION ProgramPoint BRANCHES TO Target1, ..., Targetn ;

Program points are not restricted to simple addresses. A program point description particularly suited for
CALLS and BRANCHES specifications is "R" + n COMPUTED which refers to the nth computed call
or branch in routine R – counted statically in the sense of increasing addresses, not dynamically following
the control flow. In a similar way, targets can be specified as absolute addresses, or relative to a routine entry
in the form "R" + n BYTES or relative to the address of the conditional branch instruction, which is
denoted by PC.

Example: The library routine C_MEMCPY in TI’s standard library for the TMS470 consists of hand-written
assembly code. It contains two computed branches whose targets can be specified as follows:

instruction "C_MEMCPY" + 1 computed
branches to pc + 0x04 bytes, pc + 0x14 bytes, pc + 0x24 bytes;

instruction "C_MEMCPY" + 2 computed
branches to pc + 0x10 bytes, pc + 0x20 bytes;

The advantage of such relative specifications is that they work no matter what the absolute address of
C_MEMCPY is.
If the application contains an array P of function pointers, then a call P[i](x) may branch to any address
contained in P. aiT tries to obtain the list of these addresses automatically: If the array access and the
computed call in the executable are part of a small code pattern as it is typically generated by the compiler,
aiT notices that the computed call is performed via this array. If furthermore the array contents are defined
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in a data segment so that they are statically available, and the array is situated in a ROM area so that its
contents cannot be modified, then aiT automatically considers the addresses in the array as possible targets
of the computed call.
If array access and computed call are too far apart or realized in an untypical way, aiT cannot recognize that
they belong together. Similar remarks apply to computed branches via switch tables. In both cases, the array
or table belonging to the computed call or branch can be declared in the AIS file. The declaration starts like
the ones described above:

INSTRUCTION ProgramPoint CALLS VIA ArrayDescriptor ;

INSTRUCTION ProgramPoint BRANCHES VIA ArrayDescriptor ;

Here, the ArrayDescriptor describes the location and the format of the table that contains the call or
branch targets. These targets are extracted from the table according to the given format rules.

4.2 Loop Bounds

WCET analysis requires that upper bounds for the iteration numbers of all loops be known. aiT determines
the number of loop iterations by loop bound analysis, but succeeds in doing so only for loops with constant
bounds whose code matches certain patterns typically generated by the supported compilers. Bounds for
the iteration numbers of the remaining loops must be provided by user annotations. A maximum iteration
number of j is specified in the AIS parameter file as follows:

LOOP ProgramPoint Qualifier MAX j ;

A ProgramPoint is either an address or an expression of the form "R" + n LOOPS which means
the nth loop in routine R counted from 1. Qualifier is an optional information:
begin indicates that the loop test is at the beginning of the loop, as for C’s while-loops.
end indicates that the loop test is at the end of the loop, as for C’s do-while-loops.

The qualifier is only needed if the loop structure is so complicated that aiT cannot identify the position of the
loop test by itself. If the qualifier is missing in this case, aiT assumes the worst case of the two possibilities,
which is begin where the loop test is executed one more time. The begin/end information refers to the
executable, not to the source code; the compiler may move the loop test from the beginning to the end, or
vice versa.

Example: loop "_prime" + 1 loop end max 10;

specifies that the first loop in _prime has the loop test at the end and is executed at most 10 times.

4.3 Source Code Annotations

Specifications can also be included in C source code files as special comments marked by the key string
ai:

/* ai: specification1 ; ... specificationn ; */

The names of the source files are extracted from the debug information in the executable.
Source code annotations admit a special program point or target here, which roughly denotes the place
where the annotation occurs (due to compiler optimizations the debug information is not always precise).
More exactly, aiT extracts the correspondence between source lines and code addresses from the executable.
A here occurring in source line n then points to the first instruction associated with a line number ≥ n.
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For loop annotations, it is not required that here exactly denotes the loop start address. It suffices that it
resolves to an address anywhere in the loop as in the following example:

for (i=3; i*i <= n; i += 2) {
/* ai: loop here end max 10; */
... }

4.4 Other Annotations

Apart from branch targets and loop bounds, many other properties can be declared in parameter or source
files.

• To get any WCET results at all, you must specify upper bounds for the recursion depths of all recursive
routines. These specifications are similar to the loop bound specifications described above.

• Flow constraints relate the execution counts of any two basic blocks. For instance,

flow (0x100) <= 4 (0x200);

means that the number of executions of the block starting at address 0x100 is at most 4 times the
number of executions of the block starting at 0x200. As always, relative addresses or semantic
program point descriptions may be used instead of these absolute addresses.

• aiT can be informed about the clock rate of the microprocessor. Knowing the clock rate, aiT can
display its results in real time units such as milliseconds. Without this information, all results are
displayed in processor cycles.

• End specifications instruct aiT to stop reading the executable at a certain program point. A possible
application is for instance to inform aiT that an interrupt routine called by a software interrupt does
not return.

• Value analysis tries to determine register values and addresses of memory accesses. In cases it fails,
information about exact addresses or address ranges may be supplied by annotations.

• You may specify that a memory area is read-only or write-only, contains data or code.

• You may exclude certain routines from WCET analysis and supply their WCET directly.

• You may specify that a routine never returns (like exit).

• You may specify that a certain basic block is never executed or a certain condition always evaluates
to true or to false.

• Program points can be given symbolic names for later reference.

5 aiT – WCET Analyzers

The techniques described above have been incorporated into AbsInt’s aiT WCET analyzer tools. As input
they get an executable, user annotations as described in section 4, a description of the (external) memories
and buses (i.e. a list of memory areas with minimal and maximal access times), and a task (identified by
a start address). A task denotes a sequentially executed piece of code (no threads, no parallelism, and no
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Figure 2: Call graph with WCET results

waiting for external events). This should not be confused with a task in an operating system that might
include code for synchronization or communication.
The WCET analyzers compute an upper bound of the running time of the task (assuming no interference
from the outside). Effects of interrupts, IO and timer (co-)processors are not reflected in the predicted
running time and have to be considered separately (e.g., by a quantitative analysis).
In addition to the raw information about the WCET, detailed information delivered by the analysis can be
visualized by the aiSee tool [1]. Figure 2 shows graphical representations of the call graphs for some small
examples. The calls (edges) that contribute to the worst-case running time are marked by the color red. The
computed WCET is given in CPU cycles and in microseconds provided that the cycle time of the processor
has been specified (as in the picture on the right).
The routines in the call graph can be opened to see their basic block graphs; Figure 3 shows an example.
The worst-case path through the routine is indicated by the light red edges. sum # describes the number of
traversals of an edge in the worst case. max t describes the maximal execution time of the basic block from
which the edge originates (taking into account that the basic block is left via the edge). The worst-case path,
the iteration numbers and timings are determined automatically by aiT.
Figure 4 shows the development of possible pipeline states for a basic block. Such pictures are shown by
aiT upon special demand. The grey boxes correspond to the instructions of the basic block, and the smaller
rectangles are individual pipeline states. Their cycle-wise evolution is indicated by the edges connecting
them. Each layer in the trees corresponds to one CPU cycle. Branches in the trees are caused by conditions
that could not be statically evaluated, e.g., a memory access with unknown address in presence of memory
areas with different access times. On the other hand, two pipeline states fall together when the details they
differ in leave the pipeline. This happened for instance at the end of the second instruction.
Figure 5 shows the top left pipeline state from Figure 4 in greater magnification. It displays a diagram of the
architecture of the CPU (in this case a PowerPC 555) showing the occupancy of the various pipeline stages
with the instructions currently being executed.

6 Advantages

aiT allows one to inspect the timing behavior of (time-critical parts of) program tasks. The analysis results
are determined without the need to change the code and hold for all executions (for the intrinsic cache and
pipeline behavior).
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Figure 3: Basic block graph of a routine, with timing information

• aiT takes into account the combination of all the different hardware characteristics while still obtain-
ing tight upper bounds for the WCET of a given program in reasonable time.

• aiT is a WCET tool for industrial usage. Information required for WCET estimation such as com-
puted branch targets and loop bounds is determined by static analysis. A convenient specification
and annotation language was developed in close cooperation with AbsInt’s customers for situations
where aiT’s analysis methods do not succeed. Annotations for library functions (RT, communication)
and RTOS functions can be provided in separate files by the respective developers (on source level or
separately).

• aiT works on optimized code.

• aiT saves development time by avoiding the tedious and time consuming (instrument and) execute (or
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Figure 4: Possible pipeline states in a basic block

Figure 5: Individual pipeline state

emulate) and measure cycle for a set of inputs over and over again.

• aiT’s visualization features give a precise insight of the inner working of the processors. This infor-
mation can be used for program optimization. Comparable detailed information is not available by
other existing development tools. Measurements only allows to access dedicated debug interfaces or
the outside of modern processors. The internal working is usually not captured.

• aiT is based on the theory of Abstract Interpretation thus offering a provably correct relation to the
architecture’s semantics.

7 Conclusion

aiT enables one to develop complex hard real-time systems on state-of-the-art hardware, increases safety,
and saves development time. It has been applied to real-life benchmark programs containing realistically
sized code modules. Precise timing predictions make it possible to choose the most cost-efficient hardware.
Tools like aiT are of high importance as recent trends, e.g., X-by-wire, require the knowledge of the WCET
of tasks.
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